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Fig. 8. Principal stretches A: and lattice parameters a: of bronzite versus pressure from
ultrasonic elastic data according to Thurston’s equation of state. Here ao = 18262 A, b, =

8870 A, and co = 5203 A.

axes differ by only 30%, at higher compressions .

the linear compressibility of the ¢ axis appears
to be reduced by the greater stiffness of the
SiO, chains against further compression.
Debye temperature and Grueneisen parame-
ter. The isotropic elastic constant data (Table
12) can be used to calculate the elastic Debye
temperature 6 according to [Anderson, 1963]

0 = h/k[(3p/4m)(Np/ )], (13)
where 2 and £ are Planck’s constant and Boltz-
mann’s constant, respectively, p is the number
of ions per primitive unit cell (5 for enstatite),
N is Avogadro’s number, and M is the molecular

weight. The mean sound velocity v,, is given by
[Anderson, 1965]

ta = [(v,”° + 2057%)/3]""* (14)

and v, and vs are the longitudinal and shear
velocities, respectively (Table 13). The low- and
high-temperature limits y, and y. of the elastic
Grueneisen parameter can be calculated ap-
proximately from [Anderson et al., 1968]

Y = (A% + 2v5)/(8° + 2)  (150)

Vo = ('YP + 2y5)/3 (15b)
where A = vy/v, and y, and vy are the average

Grueneisen parameters of the longitudinal and
shear modes, respectively [Anderson et dl,,
1968]:

v =3+ (KT/vp)(va/aP)T (16a)

Ys = % -+ (Kr/vs)(a”s/ap)r (165)

where (dvy/dp)r and (dvs/dp)r are the pressure
gradients of the velocities listed in Table 13.

The quantities calculated according to (13),
(15), and (16) are § = 724°K, y, = 3.09, ys =
148, y, = 1.65, and v, = 2.02. Because no ex-
perimental specific heat data of bronzite are
available, the elastic Debye temperature cannot
be compared with its thermal value.

The room temperature value of the thermal
Grueneisen parameter '

"y = BKz/pcy (17)

is 1.56, calculated from the experimental value
of the volume thermal expansion coefficient 8 =
470 10 °K™* [Frisillo and Buljan, 1972] and
from a value of ¢y = 94.50 joule mole™ °K7,
which was calculated from the elastic Debye
temperature on the basis of the Debye function
[Beattie, 1926]. As has been observed for nu-
merous other (but not all) solids, the elastic and
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thermal Grueneisen parameters y, and vy agree
surprisingly well. This agreement shows that
bronzite belongs to that large class of materials
for which the average over all vibrational modes
of the erystal required for the ealeulation of the
‘Grueneisen parameter in the quasi-harmonic
approximation [Barron, 1955] can be sueccess-
fully approximated by the directional average
of the elastic modes, the dispersion and the
contributions from the optical branches thereby
being neglected.

Because y, is only 18% smaller than y., it
appears that the temperature variation of the
Grueneisen parameter is small. A small temper-
ature dependence of y has been observed for
many (but not all) oxide compounds [Ander-
son et al., 1968]. e v

. Suanmary AND CoNCLUSIONS

The dependence of the nine single-crystal
elastic constants of bronzite on pressure and
temperature was measured and showed several
unusual features. The first pressure derivative
and the temperature derivative of the longitudi-
nal modulus in the erystallographic ¢ axis and
the first pressure derivative of the bulk modu-

lus are anomalously large. These results are
consistent with earlier polyerystal data and
compression measurements of Bridgman. The
linear compressibility of the ¢ axis decreases
much more rapidly with increasing pressure
than the linear compressibilities of the other
two axes. All these phenomena seem to arise
from the more rapid stiffening upon compres-
sion of the SiO, chains parallel to the ¢ axis and
constituting the crystal structure of enstatite.
In addition, the pressure dependence of the
shear velocities along the three crystallographic
axes, of the velocities of the quasi-shear modes
along directions forming angles of approximately
45° with these directions, and of the associated
shear moduli were found to be noticeably non-
linear below 10 kb. This phenomenon is attrib-
-uted to the decreasing stability of the enstatite
structure with increasing pressure, which re-

sults in a phase transformation or in dispropor- -

tionation into spinel and stishovite. On the other
hand, other properties, such as the magnitude
and the temperature dependence of the thermal
Grueneisen parameter and its agreement with
the elastic Grueneisen parameter, are entirely
normal, £
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The pressure dérivatives of the effective elastic
constants were determined from the expansion

coefficients A.¥ of the quantity p,J¥* as defined
by

* N
P2 = py Z‘)) AP /) (AD)

The degree N of the polynomial to which a
given set of data points for a particular mode
was fitted was determined on,the basis of three
criteria.

First, the total sum of the least-squares devia-
tion [vv] for a fit of p,J¥* to a polynomial of
degree N must be significantly smaller (say, at
least 3 times) than that of a polynomial of de-
gree N — 1 and not significantly larger (say,
at most 3 times) than that of a polynomial of
degree N + 1.

Second, the coefficients ¢, = A.¥/AA,”, where
AA.Y denotes the standard error of the nth-
order expansion coefficient for a fit to a poly-
nomial of degree N, must obey the standard
Student t test [Draper and Smith, 1966] for a
probability of 0.95. Because all runs consist of
16-18 data points of p,J¥* (with the exception
of one run consisting of only 11 data points),
the degrees of freedom for N = 1, 2, and 3 range
from 13 to 17, and the coefficient ¢ for a
probability of 0.95, according to the tables for
the standard ¢ test [Draper and Smith, 1966],
must be larger than about 2.1-2.2.

Third, the coefficients 4," and especially the
highest-order coefficients 4, obtained from in-
dependent measurements and representing dif-
ferent modes belonging to the same elastic
modulus must be consistent within their joint
standard error.

The application of these criteria is illustrated
for the shear and quasi-shear modes. As can be
seen from Table Al, the total sum of the least-
squares deviation [vv] is, for the fit to a quad-
ratic relation (N = 2), 2.6-46 times smaller
than that for the fit to a linear relation (N =

1), whereas, for the fit to a third-order poly-

nomial (N = 3) [v2] is reduced by only a
small amount ranging from 1 to 70%. Thus the
first eriterion, with the exception of one mode,
is satisfied for a fit to a quadratic relation:

In Table A2 the quantities t.* (for the co-
efficient of P* for the fit to a quadratic relation




