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Fig. 8. Principal stretches x, and lattice parameters a, of bronzite versus pressure from 
ultrasonic elastic data according to Thurston's equation of state. Here a" = 18.262 A, b. = 
8.870 A, and Co = 5.203 A. 

axes differ by only 30%, at higher compressions 
the linear compressibility of the c axis appears 
to be reduced by the greater stiffness of the 
SiO. chains against further compre::sion. 

Debye temperature and Grueneisen parame
ter. The isotropic elastic constant data (Table 
12) can be used to calculate th~ elastic Debye 
temperatureB according to [Anderson, 1965] 

8 = h/k[(3p/41!')(Np/M)]1/3V". (13) 

where hand k are Planck's constant and ' Boltz
mann's constant, respectively, p is the number 
of ions per primitive unit cell (5 for enstatite), 
N is Avogadro's number, and M is the molecular 
weight. The mean sound velocity Vrn is given by 
[Anderson, 1965] 

t' .. = [(v,,-a + 2vs-3)/3rI/3 (14) 

and v, and Vs are the longitudinal and shear 
velocities, respectively (Table 13). The low- and 
high-temperature limits y. and y., of the elastic 
Grueneisen parameter can be calculated ap
proximately from [Anderson et 01., 19G8] 

'Yo = (!:13'YP + 2"(s)/(113 + 2) (1Sa) 

'Y.., = (-yp + 2')'s)/3 (lSb) 

where 11 = vs/vp and yp and y. are the average 

Grueneisen parameters of the longitudinal and 
shear modes, respectively [Anderson et 01., 
1968]: 

'YP = ! + (KT/Vp)(iJvp/aPh (16a) 

'Ys = i + (KT/vs)(avs/JPh (16b) 

where (avpjaph and (avslap).. are the pressure 
gradients of the velocities listed in Table 13. 

The quantities calculated according to (13), 
(IS), and (16) are () = 724°K, YP = 3.09, Ys = 
1.48, Yo = 1.65, and y .. = '2.02. Because no ex
perimental specific heat data of bronzite are 
u\'ail!1ble, t.he ebstic Debyc temperature cannot 
be compared with its thermal value. 

The room temperature value of the thermal 
Grueneisen parameter 

(17) . 
is 1.S6, calculated from the experimental value 
of the volume thermal expansion coefficient f3 = 
4.70 10-5 °K-1 [Fn'sillo and Buljan, 1972] and 
from a value of Cv = 94.S0 joule ruole-1 °K-" 
which was calculated from the elastic Debye 
temperature on the basis of the Debye fun~tion 
[Bcattie, 102G]. As has becn observcd ior nu
merOU5 other (but not all) solids, the clastic and 
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thermal Gruenei,en paramct rrs I' :lIld I agree 
surprisingly well. This :!g:rCClllcnt iih oil"~ t hat 
bronzite belongs to that large> CbS5 of 111:11erials 
for which the awrage on:r all yibrat ioml modes 
of the crystal requireJ for the cJ lcubt ion of the 

-GrueneiEen parameter in the qu:!si-h:!nnonic 
approximation [Ban'on, 1955] can be "u('cess
fully approximated by the direction:!l a \-erage 
of the elastic modes, the dispersion and the 
contributions from the optical branches thereby 
being neglected. 

Because Yu is only 18% smallcr 1 han Ie, it 
appears that the temperature variation of t.he 
Grueneisen parameter is small. A small temper
ature dependence of y has been ob~eT\'ed for 
many (but not all) oxide compounds [Ander
son et 01., 1968] . 

. SUJ\DURY AND CO~CLUSIONS 

The dependence of the nine single-erystal 
elastie constants of bronzite on pressure and 
temperature was measured and showed several 
unusual features. The first pressure derivative 
and the temperature derivatiye of the longitudi
nal modulus in the crystallographic c axis and 
the firEt pressure derivative of the bulk modu
lus are anomalously large. These reEults are 
consistent with earlier polycrystal data and 
compression measurements of Bridgman. The 
linear compressibility of the c axis deereases 
much more rapidly with increasing pressure 
than the linear compressibilities of the other 
two axes. All theEe phenomena seem to arise 
from the more rapid stiffening upon compres
fion of the SiO. chains parallel to the' c a~;s and 
constituting the crystal structure of enstatite. 
In addition, the pressure dependence of the 
ehear velocities along the three crystallographic 
axes, of the velocities of the quasi-shear modes 
along directions forming angles of appro:\imately 
45° with tbeEe directions, and of the aswciated 
shear moduli were found to be noticeably non
linear below 10 kb. This phenomenon i~ attrib-

. uted to the decreasing stability of the enstatite 
structure with increaEing pres.~ure, which re
sults in :l pbase transformation or in di~propor- " 

tionation into spinel and stishovit.c. On the other 
hand, other properties, such a ~ the magnit.ude 
and the temperature dependence of the thermal 
Grueneisen parameter and its agreement with 
the elaHic Grueneisen parameter, are entirely 
normal. 

AprE~DIX: LEAST-SQC-\HES FIT OF pon" TO A 

POLY!\O~[I.U; OF DEGREE N IN PRESSURE 

The pressure dfrintiYes of the effective elastic 
constants were determined from the expansion 
coefficients A;'" of the quantity PoW' as defined 
by 

N 

Po L A.:"(P"/n!) (AI) 

The degree N of the polynomial to which a 
given set of data points for a particular mode 
was fitted was determined on. the basis of three 
criteria. 

First, the total sum of the least-squares devia
tion [vv] for a fit of po TV' to a polynomial of 
degree N must be significantly smaller (say, at 
least 3 times) th~n that of a polynomial of de
gree N - 1 and not significantly larger (say, 
at most 3 times) than that of a polynomial of 
degree N + 1. 

Second. the, coeffi cients t. N = A"N / AA"N, where 
AA~N denotes the standard error of the nth
order expansion coefficient for a fit t.o a poly
nomial of degree N, must obey t.he standard 
Student t teEt [Draper and Smith, 1966] for a 
probability of 0.95. Because all runs consist of 
16-18 data. points of poW' (with .tbe exception 
of one run consisting of only 11 data points), 
the degrees of freedom for N = 1,2. and 3 range 
from 13 to 17, and the coefficient t,.N for a 
probability of 0.95, according to the tables for 
the standard t test [Draper and Smith, 1966], 
must be larger than about 2.1-22. 

Third, the coefficients A~'" and especially the 
highest-order coefficients A,/ obtained from in
dependent measurements and representing dif
ferent modes belonging to the same elastic 
modulus must be consistent wifhin their joint 
standard error. 

The application of these criteria is illustrated 
for the shear and quasi-shear modes. As can be 
seen from Table AI , the tot.al sum of the least
squares dcyiation [v v] is, for the fit to a quad
ratic relation (N = 2), 2.6-46 times smaller 
than that for the fit to :l line:!r relation (N = 
'1), whereas, for the fit to a third-order poly
nomial (N = 3) [vv] is reduced by only a 
small amount ran ging from 1 to 70%. Thus the 
first criterion, with the exception of one mode, 
is satisfied for a fit to a. qnadratic relation: 

In Table A2 the quantities t,," {for the co
efficient of po for the fit to a quadratic relation 


