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Fig. 8. Principal stretches x, and lattice parameters a, of bronzite versus pressure from 
ultrasonic elastic data according to Thurston's equation of state. Here a" = 18.262 A, b. = 
8.870 A, and Co = 5.203 A. 

axes differ by only 30%, at higher compressions 
the linear compressibility of the c axis appears 
to be reduced by the greater stiffness of the 
SiO. chains against further compre::sion. 

Debye temperature and Grueneisen parame­
ter. The isotropic elastic constant data (Table 
12) can be used to calculate th~ elastic Debye 
temperatureB according to [Anderson, 1965] 

8 = h/k[(3p/41!')(Np/M)]1/3V". (13) 

where hand k are Planck's constant and ' Boltz­
mann's constant, respectively, p is the number 
of ions per primitive unit cell (5 for enstatite), 
N is Avogadro's number, and M is the molecular 
weight. The mean sound velocity Vrn is given by 
[Anderson, 1965] 

t' .. = [(v,,-a + 2vs-3)/3rI/3 (14) 

and v, and Vs are the longitudinal and shear 
velocities, respectively (Table 13). The low- and 
high-temperature limits y. and y., of the elastic 
Grueneisen parameter can be calculated ap­
proximately from [Anderson et 01., 19G8] 

'Yo = (!:13'YP + 2"(s)/(113 + 2) (1Sa) 

'Y.., = (-yp + 2')'s)/3 (lSb) 

where 11 = vs/vp and yp and y. are the average 

Grueneisen parameters of the longitudinal and 
shear modes, respectively [Anderson et 01., 
1968]: 

'YP = ! + (KT/Vp)(iJvp/aPh (16a) 

'Ys = i + (KT/vs)(avs/JPh (16b) 

where (avpjaph and (avslap).. are the pressure 
gradients of the velocities listed in Table 13. 

The quantities calculated according to (13), 
(IS), and (16) are () = 724°K, YP = 3.09, Ys = 
1.48, Yo = 1.65, and y .. = '2.02. Because no ex­
perimental specific heat data of bronzite are 
u\'ail!1ble, t.he ebstic Debyc temperature cannot 
be compared with its thermal value. 

The room temperature value of the thermal 
Grueneisen parameter 

(17) . 
is 1.S6, calculated from the experimental value 
of the volume thermal expansion coefficient f3 = 
4.70 10-5 °K-1 [Fn'sillo and Buljan, 1972] and 
from a value of Cv = 94.S0 joule ruole-1 °K-" 
which was calculated from the elastic Debye 
temperature on the basis of the Debye fun~tion 
[Bcattie, 102G]. As has becn observcd ior nu­
merOU5 other (but not all) solids, the clastic and 
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thermal Gruenei,en paramct rrs I' :lIld I agree 
surprisingly well. This :!g:rCClllcnt iih oil"~ t hat 
bronzite belongs to that large> CbS5 of 111:11erials 
for which the awrage on:r all yibrat ioml modes 
of the crystal requireJ for the cJ lcubt ion of the 

-GrueneiEen parameter in the qu:!si-h:!nnonic 
approximation [Ban'on, 1955] can be "u('cess­
fully approximated by the direction:!l a \-erage 
of the elastic modes, the dispersion and the 
contributions from the optical branches thereby 
being neglected. 

Because Yu is only 18% smallcr 1 han Ie, it 
appears that the temperature variation of t.he 
Grueneisen parameter is small. A small temper­
ature dependence of y has been ob~eT\'ed for 
many (but not all) oxide compounds [Ander­
son et 01., 1968] . 

. SUJ\DURY AND CO~CLUSIONS 

The dependence of the nine single-erystal 
elastie constants of bronzite on pressure and 
temperature was measured and showed several 
unusual features. The first pressure derivative 
and the temperature derivatiye of the longitudi­
nal modulus in the crystallographic c axis and 
the firEt pressure derivative of the bulk modu­
lus are anomalously large. These reEults are 
consistent with earlier polycrystal data and 
compression measurements of Bridgman. The 
linear compressibility of the c axis deereases 
much more rapidly with increasing pressure 
than the linear compressibilities of the other 
two axes. All theEe phenomena seem to arise 
from the more rapid stiffening upon compres­
fion of the SiO. chains parallel to the' c a~;s and 
constituting the crystal structure of enstatite. 
In addition, the pressure dependence of the 
ehear velocities along the three crystallographic 
axes, of the velocities of the quasi-shear modes 
along directions forming angles of appro:\imately 
45° with tbeEe directions, and of the aswciated 
shear moduli were found to be noticeably non­
linear below 10 kb. This phenomenon i~ attrib-

. uted to the decreasing stability of the enstatite 
structure with increaEing pres.~ure, which re­
sults in :l pbase transformation or in di~propor- " 

tionation into spinel and stishovit.c. On the other 
hand, other properties, such a ~ the magnit.ude 
and the temperature dependence of the thermal 
Grueneisen parameter and its agreement with 
the elaHic Grueneisen parameter, are entirely 
normal. 

AprE~DIX: LEAST-SQC-\HES FIT OF pon" TO A 

POLY!\O~[I.U; OF DEGREE N IN PRESSURE 

The pressure dfrintiYes of the effective elastic 
constants were determined from the expansion 
coefficients A;'" of the quantity PoW' as defined 
by 

N 

Po L A.:"(P"/n!) (AI) 

The degree N of the polynomial to which a 
given set of data points for a particular mode 
was fitted was determined on. the basis of three 
criteria. 

First, the total sum of the least-squares devia­
tion [vv] for a fit of po TV' to a polynomial of 
degree N must be significantly smaller (say, at 
least 3 times) th~n that of a polynomial of de­
gree N - 1 and not significantly larger (say, 
at most 3 times) than that of a polynomial of 
degree N + 1. 

Second. the, coeffi cients t. N = A"N / AA"N, where 
AA~N denotes the standard error of the nth­
order expansion coefficient for a fit t.o a poly­
nomial of degree N, must obey t.he standard 
Student t teEt [Draper and Smith, 1966] for a 
probability of 0.95. Because all runs consist of 
16-18 data. points of poW' (with .tbe exception 
of one run consisting of only 11 data points), 
the degrees of freedom for N = 1,2. and 3 range 
from 13 to 17, and the coefficient t,.N for a 
probability of 0.95, according to the tables for 
the standard t test [Draper and Smith, 1966], 
must be larger than about 2.1-22. 

Third, the coefficients A~'" and especially the 
highest-order coefficients A,/ obtained from in­
dependent measurements and representing dif­
ferent modes belonging to the same elastic 
modulus must be consistent wifhin their joint 
standard error. 

The application of these criteria is illustrated 
for the shear and quasi-shear modes. As can be 
seen from Table AI , the tot.al sum of the least­
squares dcyiation [v v] is, for the fit to a quad­
ratic relation (N = 2), 2.6-46 times smaller 
than that for the fit to :l line:!r relation (N = 
'1), whereas, for the fit to a third-order poly­
nomial (N = 3) [vv] is reduced by only a 
small amount ran ging from 1 to 70%. Thus the 
first criterion, with the exception of one mode, 
is satisfied for a fit to a. qnadratic relation: 

In Table A2 the quantities t,," {for the co­
efficient of po for the fit to a quadratic relation 


